netconfcentral logo

ietf-network-topology-state

HTML

ietf-network-topology-state@2018-02-26



  module ietf-network-topology-state {

    yang-version 1.1;

    namespace
      "urn:ietf:params:xml:ns:yang:ietf-network-topology-state";

    prefix nt-s;

    import ietf-network-state {
      prefix nw-s;
      reference
        "RFC 8345: A YANG Data Model for Network Topologies";


    }
    import ietf-network-topology {
      prefix nt;
      reference
        "RFC 8345: A YANG Data Model for Network Topologies";


    }

    organization
      "IETF I2RS (Interface to the Routing System) Working Group";

    contact
      "WG Web:    <https://datatracker.ietf.org/wg/i2rs/>
WG List:   <mailto:i2rs@ietf.org>

Editor:    Alexander Clemm
	   <mailto:ludwig@clemm.org>

Editor:    Jan Medved
	   <mailto:jmedved@cisco.com>

Editor:    Robert Varga
	   <mailto:robert.varga@pantheon.tech>

Editor:    Nitin Bahadur
	   <mailto:nitin_bahadur@yahoo.com>

Editor:    Hariharan Ananthakrishnan
	   <mailto:hari@packetdesign.com>

Editor:    Xufeng Liu
	   <mailto:xufeng.liu.ietf@gmail.com>";

    description
      "This module defines a common base data model for network
topology state, representing topology that either (1) is learned
or (2) results from applying topology that has been configured
per the 'ietf-network-topology' data model, mirroring the
corresponding data nodes in this data model.  It augments the
base network state data model with links to connect nodes, as
well as termination points to terminate links on nodes.

The data model mirrors 'ietf-network-topology' but contains only
read-only state data.  The data model is not needed when the
underlying implementation infrastructure supports the Network
Management Datastore Architecture (NMDA).

Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code.  All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC 8345;
see the RFC itself for full legal notices.";

    revision "2018-02-26" {
      description "Initial revision.";
      reference
        "RFC 8345: A YANG Data Model for Network Topologies";

    }


    grouping link-ref {
      description
        "References a link in a specific network.  Although this
grouping is not used in this module, it is defined here for
the convenience of augmenting modules.";
      leaf link-ref {
        type leafref {
          path
            "/nw-s:networks/nw-s:network[nw-s:network-id=current()/../network-ref]/nt-s:link/nt-s:link-id";
          require-instance false;
        }
        description
          "A type for an absolute reference to a link instance.
(This type should not be used for relative references.
In such a case, a relative path should be used instead.)";
      }

      uses nw-s:network-ref;
    }  // grouping link-ref

    grouping tp-ref {
      description
        "References a termination point in a specific node.  Although
this grouping is not used in this module, it is defined here
for the convenience of augmenting modules.";
      leaf tp-ref {
        type leafref {
          path
            "/nw-s:networks/nw-s:network[nw-s:network-id=current()/../network-ref]/nw-s:node[nw-s:node-id=current()/../node-ref]/nt-s:termination-point/nt-s:tp-id";
          require-instance false;
        }
        description
          "A type for an absolute reference to a termination point.
(This type should not be used for relative references.
In such a case, a relative path should be used instead.)";
      }

      uses nw-s:node-ref;
    }  // grouping tp-ref

    augment /nw-s:networks/nw-s:network {
      description
        "Add links to the network data model.";
      list link {
        key "link-id";
        description
          "A network link connects a local (source) node and
a remote (destination) node via a set of the respective
node's termination points.  It is possible to have several
links between the same source and destination nodes.
Likewise, a link could potentially be re-homed between
termination points.  Therefore, in order to ensure that we
would always know to distinguish between links, every link
is identified by a dedicated link identifier.  Note that a
link models a point-to-point link, not a multipoint link.";
        container source {
          description
            "This container holds the logical source of a particular
link.";
          leaf source-node {
            type leafref {
              path "../../../nw-s:node/nw-s:node-id";
              require-instance false;
            }
            description
              "Source node identifier.  Must be in the same topology.";
          }

          leaf source-tp {
            type leafref {
              path "../../../nw-s:node[nw-s:node-id=current()/../source-node]/termination-point/tp-id";
              require-instance false;
            }
            description
              "This termination point is located within the source node
and terminates the link.";
          }
        }  // container source

        container destination {
          description
            "This container holds the logical destination of a
particular link.";
          leaf dest-node {
            type leafref {
              path "../../../nw-s:node/nw-s:node-id";
              require-instance false;
            }
            description
              "Destination node identifier.  Must be in the same
network.";
          }

          leaf dest-tp {
            type leafref {
              path "../../../nw-s:node[nw-s:node-id=current()/../dest-node]/termination-point/tp-id";
              require-instance false;
            }
            description
              "This termination point is located within the
destination node and terminates the link.";
          }
        }  // container destination

        leaf link-id {
          type nt:link-id;
          description
            "The identifier of a link in the topology.
A link is specific to a topology to which it belongs.";
        }

        list supporting-link {
          key "network-ref link-ref";
          description
            "Identifies the link or links on which this link depends.";
          leaf network-ref {
            type leafref {
              path
                "../../../nw-s:supporting-network/nw-s:network-ref";
              require-instance false;
            }
            description
              "This leaf identifies in which underlay topology
the supporting link is present.";
          }

          leaf link-ref {
            type leafref {
              path
                "/nw-s:networks/nw-s:network[nw-s:network-id=current()/../network-ref]/link/link-id";
              require-instance false;
            }
            description
              "This leaf identifies a link that is a part
of this link's underlay.  Reference loops in which
a link identifies itself as its underlay, either
directly or transitively, are not allowed.";
          }
        }  // list supporting-link
      }  // list link
    }

    augment /nw-s:networks/nw-s:network/nw-s:node {
      description
        "Augments termination points that terminate links.
Termination points can ultimately be mapped to interfaces.";
      list termination-point {
        key "tp-id";
        description
          "A termination point can terminate a link.
Depending on the type of topology, a termination point
could, for example, refer to a port or an interface.";
        leaf tp-id {
          type nt:tp-id;
          description
            "Termination point identifier.";
        }

        list supporting-termination-point {
          key "network-ref node-ref tp-ref";
          description
            "This list identifies any termination points on which a
given termination point depends or onto which it maps.
Those termination points will themselves be contained
in a supporting node.  This dependency information can be
inferred from the dependencies between links.  Therefore,
this item is not separately configurable.  Hence, no
corresponding constraint needs to be articulated.
The corresponding information is simply provided by the
implementing system.";
          leaf network-ref {
            type leafref {
              path
                "../../../nw-s:supporting-node/nw-s:network-ref";
              require-instance false;
            }
            description
              "This leaf identifies in which topology the
supporting termination point is present.";
          }

          leaf node-ref {
            type leafref {
              path
                "../../../nw-s:supporting-node/nw-s:node-ref";
              require-instance false;
            }
            description
              "This leaf identifies in which node the supporting
termination point is present.";
          }

          leaf tp-ref {
            type leafref {
              path
                "/nw-s:networks/nw-s:network[nw-s:network-id=current()/../network-ref]/nw-s:node[nw-s:node-id=current()/../node-ref]/termination-point/tp-id";
              require-instance false;
            }
            description
              "Reference to the underlay node (the underlay node must
be in a different topology).";
          }
        }  // list supporting-termination-point
      }  // list termination-point
    }
  }  // module ietf-network-topology-state

Summary

  
  
Organization IETF I2RS (Interface to the Routing System) Working Group
  
Module ietf-network-topology-state
Version 2018-02-26
File ietf-network-topology-state@2018-02-26.yang
  
Prefix nt-s
Namespace urn:ietf:params:xml:ns:yang:ietf-network-topology-state
  
Cooked /cookedmodules/ietf-network-topology-state/2018-02-26
YANG /src/ietf-network-topology-state@2018-02-26.yang
XSD /xsd/ietf-network-topology-state@2018-02-26.xsd
  
Abstract This module defines a common base data model for network topology state, representing topology that either (1) is learned or (2)...
  
Contact
WG Web:    <https://datatracker.ietf.org/wg/i2rs/>
WG List:   <mailto:i2rs@ietf.org>

Editor:    Alexander Clemm
	   <mailto:ludwig@clemm.org>

Editor:    Jan Medved
	   <mailto:jmedved@cisco.com>

Editor:    Robert Varga
	   <mailto:robert.varga@pantheon.tech>

Editor:    Nitin Bahadur
	   <mailto:nitin_bahadur@yahoo.com>

Editor:    Hariharan Ananthakrishnan
	   <mailto:hari@packetdesign.com>

Editor:    Xufeng Liu
	   <mailto:xufeng.liu.ietf@gmail.com>

Description

 
This module defines a common base data model for network
topology state, representing topology that either (1) is learned
or (2) results from applying topology that has been configured
per the 'ietf-network-topology' data model, mirroring the
corresponding data nodes in this data model.  It augments the
base network state data model with links to connect nodes, as
well as termination points to terminate links on nodes.

The data model mirrors 'ietf-network-topology' but contains only
read-only state data.  The data model is not needed when the
underlying implementation infrastructure supports the Network
Management Datastore Architecture (NMDA).

Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code.  All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC 8345;
see the RFC itself for full legal notices.

Groupings

Grouping Objects Abstract
link-ref link-ref network-ref References a link in a specific network. Although this grouping is not used in this module, it is defined here for the convenience of augmenting modules.
tp-ref tp-ref node-ref network-ref References a termination point in a specific node. Although this grouping is not used in this module, it is defined here for the convenience of augmenting modules.