netconfcentral logo

ietf-packet-fields@2019-03-04



  module ietf-packet-fields {

    yang-version 1.1;

    namespace
      "urn:ietf:params:xml:ns:yang:ietf-packet-fields";

    prefix packet-fields;

    import ietf-inet-types {
      prefix inet;
      reference
        "RFC 6991 - Common YANG Data Types.";


    }
    import ietf-yang-types {
      prefix yang;
      reference
        "RFC 6991 - Common YANG Data Types.";


    }
    import ietf-ethertypes {
      prefix eth;
      reference
        "RFC 8519 - YANG Data Model for Network Access Control
        	   Lists (ACLs).";


    }

    organization
      "IETF NETMOD (Network Modeling) Working Group.";

    contact
      "WG Web:  <https://datatracker.ietf.org/wg/netmod/>
WG List: netmod@ietf.org

Editor: Mahesh Jethanandani
	mjethanandani@gmail.com
Editor: Lisa Huang
	huangyi_99@yahoo.com
Editor: Sonal Agarwal
	sagarwal12@gmail.com
Editor: Dana Blair
	dana@blairhome.com";

    description
      "This YANG module defines groupings that are used by
the ietf-access-control-list YANG module.  Their usage
is not limited to ietf-access-control-list and can be
used anywhere as applicable.

Copyright (c) 2019 IETF Trust and the persons identified as
the document authors.  All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC 8519; see
the RFC itself for full legal notices.";

    revision "2019-03-04" {
      description "Initial version.";
      reference
        "RFC 8519: YANG Data Model for Network Access Control
        	  Lists (ACLs).";

    }


    typedef operator {
      type enumeration {
        enum "lte" {
          value 0;
          description
            "Less than or equal to.";
        }
        enum "gte" {
          value 1;
          description
            "Greater than or equal to.";
        }
        enum "eq" {
          value 2;
          description "Equal to.";
        }
        enum "neq" {
          value 3;
          description "Not equal to.";
        }
      }
      description
        "The source and destination port range definitions
can be further qualified using an operator.  An
operator is needed only if the lower-port is specified
and the upper-port is not specified.  The operator
therefore further qualifies the lower-port only.";
    }

    grouping port-range-or-operator {
      description
        "Grouping for port definitions in the form of a
choice statement.";
      choice port-range-or-operator {
        description
          "Choice of specifying a port range or a single
port along with an operator.";
        case range {
          leaf lower-port {
            type inet:port-number;
            must ". <= ../upper-port" {
              error-message
                "The lower-port must be less than or equal to
the upper-port.";
            }
            mandatory true;
            description
              "Lower boundary for a port.";
          }

          leaf upper-port {
            type inet:port-number;
            mandatory true;
            description
              "Upper boundary for a port.";
          }
        }  // case range

        case operator {
          leaf operator {
            type operator;
            default "eq";
            description
              "Operator to be applied on the port below.";
          }

          leaf port {
            type inet:port-number;
            mandatory true;
            description
              "Port number along with the operator on which to
match.";
          }
        }  // case operator
      }  // choice port-range-or-operator
    }  // grouping port-range-or-operator

    grouping acl-ip-header-fields {
      description
        "IP header fields common to IPv4 and IPv6";
      reference
        "RFC 791: Internet Protocol.";

      leaf dscp {
        type inet:dscp;
        description
          "Differentiated Services Code Point.";
        reference
          "RFC 2474: Definition of the Differentiated Services
          	  Field (DS Field) in the IPv4 and IPv6
          	  Headers.";

      }

      leaf ecn {
        type uint8 {
          range "0..3";
        }
        description
          "Explicit Congestion Notification.";
        reference
          "RFC 3168: The Addition of Explicit Congestion
          	  Notification (ECN) to IP.";

      }

      leaf length {
        type uint16;
        description
          "In the IPv4 header field, this field is known as the Total
Length.  Total Length is the length of the datagram, measured
in octets, including internet header and data.

In the IPv6 header field, this field is known as the Payload
Length, which is the length of the IPv6 payload, i.e., the rest
of the packet following the IPv6 header, in octets.";
        reference
          "RFC 791: Internet Protocol
           RFC 8200: Internet Protocol, Version 6 (IPv6) Specification.";

      }

      leaf ttl {
        type uint8;
        description
          "This field indicates the maximum time the datagram is allowed
to remain in the internet system.  If this field contains the
value zero, then the datagram must be dropped.

In IPv6, this field is known as the Hop Limit.";
        reference
          "RFC 791: Internet Protocol
           RFC 8200: Internet Protocol, Version 6 (IPv6) Specification.";

      }

      leaf protocol {
        type uint8;
        description
          "Internet Protocol number.  Refers to the protocol of the
payload.  In IPv6, this field is known as 'next-header',
and if extension headers are present, the protocol is
present in the 'upper-layer' header.";
        reference
          "RFC 791: Internet Protocol
           RFC 8200: Internet Protocol, Version 6 (IPv6) Specification.";

      }
    }  // grouping acl-ip-header-fields

    grouping acl-ipv4-header-fields {
      description
        "Fields in the IPv4 header.";
      leaf ihl {
        type uint8 {
          range "5..60";
        }
        description
          "In an IPv4 header field, the Internet Header Length (IHL) is
the length of the internet header in 32-bit words and
thus points to the beginning of the data.  Note that the
minimum value for a correct header is 5.";
      }

      leaf flags {
        type bits {
          bit reserved {
            position 0;
            description
              "Reserved.  Must be zero.";
          }
          bit fragment {
            position 1;
            description
              "Setting the value to 0 indicates may fragment, while
setting the value to 1 indicates do not fragment.";
          }
          bit more {
            position 2;
            description
              "Setting the value to 0 indicates this is the last fragment,
and setting the value to 1 indicates more fragments are
coming.";
          }
        }
        description
          "Bit definitions for the Flags field in the IPv4 header.";
      }

      leaf offset {
        type uint16 {
          range "20..65535";
        }
        description
          "The fragment offset is measured in units of 8 octets (64 bits).
The first fragment has offset zero.  The length is 13 bits";
      }

      leaf identification {
        type uint16;
        description
          "An identifying value assigned by the sender to aid in
assembling the fragments of a datagram.";
      }

      choice destination-network {
        description
          "Choice of specifying a destination IPv4 address or
referring to a group of IPv4 destination addresses.";
        leaf destination-ipv4-network {
          type inet:ipv4-prefix;
          description
            "Destination IPv4 address prefix.";
        }
      }  // choice destination-network

      choice source-network {
        description
          "Choice of specifying a source IPv4 address or
referring to a group of IPv4 source addresses.";
        leaf source-ipv4-network {
          type inet:ipv4-prefix;
          description
            "Source IPv4 address prefix.";
        }
      }  // choice source-network
    }  // grouping acl-ipv4-header-fields

    grouping acl-ipv6-header-fields {
      description
        "Fields in the IPv6 header.";
      reference
        "RFC 4291: IP Version 6 Addressing Architecture
         RFC 4007: IPv6 Scoped Address Architecture
         RFC 5952: A Recommendation for IPv6 Address Text
        	  Representation.";

      choice destination-network {
        description
          "Choice of specifying a destination IPv6 address
or referring to a group of IPv6 destination
addresses.";
        leaf destination-ipv6-network {
          type inet:ipv6-prefix;
          description
            "Destination IPv6 address prefix.";
        }
      }  // choice destination-network

      choice source-network {
        description
          "Choice of specifying a source IPv6 address or
referring to a group of IPv6 source addresses.";
        leaf source-ipv6-network {
          type inet:ipv6-prefix;
          description
            "Source IPv6 address prefix.";
        }
      }  // choice source-network

      leaf flow-label {
        type inet:ipv6-flow-label;
        description "IPv6 Flow label.";
      }
    }  // grouping acl-ipv6-header-fields

    grouping acl-eth-header-fields {
      description
        "Fields in the Ethernet header.";
      reference
        "IEEE 802: IEEE Standard for Local and Metropolitan
        Area Networks: Overview and Architecture.";

      leaf destination-mac-address {
        type yang:mac-address;
        description
          "Destination IEEE 802 Media Access Control (MAC)
address.";
      }

      leaf destination-mac-address-mask {
        type yang:mac-address;
        description
          "Destination IEEE 802 MAC address mask.";
      }

      leaf source-mac-address {
        type yang:mac-address;
        description
          "Source IEEE 802 MAC address.";
      }

      leaf source-mac-address-mask {
        type yang:mac-address;
        description
          "Source IEEE 802 MAC address mask.";
      }

      leaf ethertype {
        type eth:ethertype;
        description
          "The Ethernet Type (or Length) value represented
in the canonical order defined by IEEE 802.
The canonical representation uses lowercase
characters.";
        reference
          "IEEE 802-2014, Clause 9.2.";

      }
    }  // grouping acl-eth-header-fields

    grouping acl-tcp-header-fields {
      description
        "Collection of TCP header fields that can be used to
set up a match filter.";
      leaf sequence-number {
        type uint32;
        description
          "Sequence number that appears in the packet.";
      }

      leaf acknowledgement-number {
        type uint32;
        description
          "The acknowledgement number that appears in the
packet.";
      }

      leaf data-offset {
        type uint8 {
          range "5..15";
        }
        description
          "Specifies the size of the TCP header in 32-bit
words.  The minimum size header is 5 words and
the maximum is 15 words; thus, this gives a
minimum size of 20 bytes and a maximum of 60
bytes, allowing for up to 40 bytes of options
in the header.";
      }

      leaf reserved {
        type uint8;
        description
          "Reserved for future use.";
      }

      leaf flags {
        type bits {
          bit cwr {
            position 1;
            description
              "The Congestion Window Reduced (CWR) flag is set
by the sending host to indicate that it received
a TCP segment with the ECN-Echo (ECE) flag set
and had responded in the congestion control
mechanism.";
            reference
              "RFC 3168: The Addition of Explicit Congestion
              	  Notification (ECN) to IP.";

          }
          bit ece {
            position 2;
            description
              "ECN-Echo has a dual role, depending on the value
of the SYN flag.  It indicates the following: if
the SYN flag is set (1), the TCP peer is ECN
capable, and if the SYN flag is clear (0), a packet
with the Congestion Experienced flag set (ECN=11)
in the IP header was received during normal
transmission (added to the header by RFC 3168).
This serves as an indication of network congestion
(or impending congestion) to the TCP sender.";
            reference
              "RFC 3168: The Addition of Explicit Congestion
              	  Notification (ECN) to IP.";

          }
          bit urg {
            position 3;
            description
              "Indicates that the Urgent Pointer field is significant.";
          }
          bit ack {
            position 4;
            description
              "Indicates that the Acknowledgement field is significant.
All packets after the initial SYN packet sent by the
client should have this flag set.";
          }
          bit psh {
            position 5;
            description
              "Push function.  Asks to push the buffered data to the
receiving application.";
          }
          bit rst {
            position 6;
            description
              "Reset the connection.";
          }
          bit syn {
            position 7;
            description
              "Synchronize sequence numbers.  Only the first packet
sent from each end should have this flag set.  Some
other flags and fields change meaning based on this
flag, and some are only valid for when it is set,
and others when it is clear.";
          }
          bit fin {
            position 8;
            description
              "Last package from the sender.";
          }
        }
        description
          "Also known as Control Bits.  Contains nine 1-bit flags.";
        reference
          "RFC 793: Transmission Control Protocol.";

      }

      leaf window-size {
        type uint16;
        units "bytes";
        description
          "The size of the receive window, which specifies
the number of window size units beyond the segment
identified by the sequence number in the Acknowledgement
field that the sender of this segment is currently
willing to receive.";
      }

      leaf urgent-pointer {
        type uint16;
        description
          "This field is an offset from the sequence number
indicating the last urgent data byte.";
      }

      leaf options {
        type binary {
          length "1..40";
        }
        description
          "The length of this field is determined by the
Data Offset field.  Options have up to three
fields: Option-Kind (1 byte), Option-Length
(1 byte), and Option-Data (variable).  The Option-Kind
field indicates the type of option and is the
only field that is not optional.  Depending on
what kind of option we are dealing with,
the next two fields may be set: the Option-Length
field indicates the total length of the option,
and the Option-Data field contains the value of
the option, if applicable.";
      }
    }  // grouping acl-tcp-header-fields

    grouping acl-udp-header-fields {
      description
        "Collection of UDP header fields that can be used
to set up a match filter.";
      leaf length {
        type uint16;
        description
          "A field that specifies the length in bytes of
the UDP header and UDP data.  The minimum
length is 8 bytes because that is the length of
the header.  The field size sets a theoretical
limit of 65,535 bytes (8-byte header plus 65,527
bytes of data) for a UDP datagram.  However, the
actual limit for the data length, which is
imposed by the underlying IPv4 protocol, is
65,507 bytes (65,535 minus 8-byte UDP header
minus 20-byte IP header).

In IPv6 jumbograms, it is possible to have
UDP packets of a size greater than 65,535 bytes.
RFC 2675 specifies that the Length field is set
to zero if the length of the UDP header plus
UDP data is greater than 65,535.";
      }
    }  // grouping acl-udp-header-fields

    grouping acl-icmp-header-fields {
      description
        "Collection of ICMP header fields that can be
used to set up a match filter.";
      leaf type {
        type uint8;
        description
          "Also known as control messages.";
        reference
          "RFC 792: Internet Control Message Protocol
           RFC 4443: Internet Control Message Protocol (ICMPv6)
          	  for Internet Protocol Version 6 (IPv6)
          	  Specification.";

      }

      leaf code {
        type uint8;
        description
          "ICMP subtype.  Also known as control messages.";
        reference
          "RFC 792: Internet Control Message Protocol
           RFC 4443: Internet Control Message Protocol (ICMPv6)
          	  for Internet Protocol Version 6 (IPv6)
          	  Specification.";

      }

      leaf rest-of-header {
        type binary;
        description
          "Unbounded in length, the contents vary based on the
ICMP type and code.  Also referred to as 'Message Body'
in ICMPv6.";
        reference
          "RFC 792: Internet Control Message Protocol
           RFC 4443: Internet Control Message Protocol (ICMPv6)
          	  for Internet Protocol Version 6 (IPv6)
          	  Specification.";

      }
    }  // grouping acl-icmp-header-fields
  }  // module ietf-packet-fields